




A 11 throughout his history man has 
wanted to know the dimensions 
of his world and his place in it. 
Before the advent of scientific in- 

struments the universe did not seem very 
large or complicated. Anything too small to 
detect with the naked eye was not known, 
and the few visible stars might almost be 
touched if only there were a higher hill 
nearby. 

Today, with high-energy particle ac- 
celerators the frontier has been pushed down 
to distance intervals as small as 1016 cen- 
timeter and with super telescopes to cos- 
mological distances. These explorations 
have revealed a multifaceted universe; at 
first glance its diversity appears too com- 
plicated to be described in any unified man- 
ner. Nevertheless, it has been possible to 
incorporate the immense variety of ex- 
perimental data into a small number of 
quantum field theories that describe four 
basic interactions-weak, strong, electro- 
magnetic, and gravitational. Their mathe- 
matical formulations are similar in that each 
one can be derived from a local symmetry. 
This similarity has inspired hope for even 
greater progress: perhaps an extension of the 
present theoretical framework will provide a 
single unified description of all natural 
phenomena. 

This dream of unification has recurred 
again and again, and there have been many 
successes: Maxwell's unification of elec- 
tricity and magnetism; Einstein's unification 
of gravitational phenomena with the 
geometry of space-time; the quantum-me- 
chanical unification of Newtonian mechan- 
ics with the wave-like behavior of matter; the 
quantum-mechanical generalization of elec- 
trodynamics; and finally the recent unifica- 
tion of electromagnetism with the weak 
force. Each of these advances is a crucial 
component of the present efforts to seek a 
more complete physical theory. 

Before the successes of the past inspire too 
much optimism, it is important to note that a 
unified theory will require an unprecedented 
extrapolation. The present optimism is gen- 
erated by the discovery of theories successful 

at describing phenomena that take place over 
distance intervals of order 1016 centimeter 
or larger. These theories may be valid to 
much shorter distances, but that remains to 
be tested experimentally. A fully unified the- 
ory will have to include gravity and therefore 
will probably have to describe spatial struc- 
tures as small as 1 o~~ centimeter, the funda- 
mental length (determined by Newton's 
gravitational constant) in the theory of grav- 
ity. History suggests cause for further 
caution: the record shows many failures re- 
sulting from attempts to unify the wrong, too 
few, or too many physical phenomena. The 
end of the 19th century saw a huge but 
unsuccessful effort to unify the description of 
all Nature with thermodynamics. Since the 
second law of thermodynamics cannot be 
derived from Newtonian mechanics, some 
physicists felt it must have the most funda- 
mental significance and sought to derive the 
rest of physics from it. Then came a period of 
belief in the combined use of Maxwell's elec- 
trodynamics and Newton's mechanics to ex- 
plain all natural phenomena. This effort was 
also doomed to failure: not only did these 
theories lack consistency (Newton's equa- 
tions are consistent with particles traveling 
faster than the speed of light, whereas the 
Lorentz invariant equations of Maxwell are 
not), but also new experimental results were 
emerging that implied the quantum structure 
of matter. Further into this century came the 
celebrated effort by Einstein to formulate a 
unified field theory of gravity and elec- 
tromagnetism. His failure notwithstanding, 
the mathematical form of his classical theory 
has many remarkable similarities to the 
modern efforts to unify all known fimdamen- 
tal interactions. We must be wary that our 
reliance on quantum field theory and local 
symmetry may be similarly misdirected, al- 
though we suppose here that it is not. 

Two questions will be the central themes 
of this essay. First, should we believe that the 
theories known today are the correct compo- 
nents of a truly unified theory? The compo- 
nent theories are now so broadly accepted 
that they have become known as the "stan- 
dard model." They include the electroweak 

theory, which gives a unified description of 
quantum electrodynamics (QED) and the 
weak interactions, and quantum chromo- 
dynamics (QCD), which is an attractive can- 
didate theory for the strong interactions. We 
will argue that, although Einstein's theory of 
gravity (also called general relativity) has a 
somewhat different status among physical 
theories, it should also be included in the 
standard model. If it is, then the standard 
model incorporates all observed physical 
phenomena-from the shortest distance in- 
tervals probed at the highest energy ac- 
celerators to the longest distances seen by 
modern telescopes. However, despite its ex- 
perimental successes, the standard model re- 
mains unsatisfying; among its shortcomings 
is the presence of a large number of arbitrary 
constants that require explanations. It re- 
mains to be seen whether the next level of 
unification will provide just a few insights 
into the standard model or will unify all 
natural phenomena. 

The second question examined in this es- 
say is twofold: What are the possible strate- 
gies for generalizing and extending the stan- 
dard model, and how nearly do models based 
on these strategies describe Nature? A central 
problem of theoretical physics is to identify 
the features of a theory that should be ab- 
stracted, extended, modified, or generalized. 
From among the bewildering array of the- 
ories, speculations, and ideas that have 
grown from the standard model, we will 
describe several that are currently attracting 
much attention. 

We focus on two extensions of established 
concepts. The first is called supersymmetry; 
it enlarges the usual space-time symmetries 
of field theory, namely, Poinark invariance, 
to include a symmetry among the bosons 
(particles of integer spin) and ferrnions 
(particles of half-odd integer spin). One of 
the intriguing features of supersymmetry is 
that it can be extended to include internal 
symmetries (see Note 2 in "Lecture Notes- 
From Simple Field Theories to the Standard 
Model). In the standard model internal local 
symmetries play a crucial role, both for 
classifying elementary particles and for de- 
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Fig. 1. Evolution of fundamental theories of Nature from the direct and well-established extension, or theoretical gen- 
classical field theories of Newton and Maxwell to the grand- eralization. The wide arrow symbolizes the goal of present 
est theoretical conjectures of today. The relationships among research, the unification of quantum field theories with 
these theories are discussed in the text. Solid lines indicate a gravity. 
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terrnining the form of the interactions among 
them. The electroweak theory is based on the 
internal local symmetry group SU(2) X U(l) 
(see Note 8) and quantum chromodynamics 
on the internal local symmetry group SU(3). 
Gravity is based on space-time symmetries: 
general coordinate invariance and local 
Poincare symmetry. It is tempting to try to 
unify all these symmetries with supersym- 
metry, 

Other important implications of super- 
symmetry are that it enlarges the scope of the 
classification schemes of the basic particles 
to include fields of different spins in the same 
multiplet, and it helps to solve some tech- 
nical problems concerning large mass ratios 
that plague certain efforts to derive the stan- 
dard model. Most significantly, if supersym- 
metry is made to be a local symmetry, then it 
automatically implies a theory of gravity, 
called supergravity, that is a generalization of 
Einstein's theory. Supergravity theories re- 
quire the unification of gravity with other 
kinds of interactions, which may be, in some 
future version, the electroweak and strong 
interactions. The near successes of this ap- 
proach are very encouraging. 

The other major idea described here is the 
extension of the space-time manifold to 
more than four dimensions, the extra 
dimensions having, so far, escaped observa- 
tion. This revolutionary idea implies that 
particles are grouped into larger symmetry 
multiplets and the basic interactions have a 
geometrical origin. Although the idea of ex- 
tending space-time beyond four dimensions 
is not new, it becomes natural in the context 
of supergravity theories because these com- 
plicated theories in four dimensions may be 
derived from relatively simple-looking the- 
ories in higher dimensions. 

We will follow these developments one 
step further to a generalization of the field 
concept: instead of depending on space-time, 
the fields may depend on paths in space- 
time. When this generalization is combined 
with supersymmetry, the resulting theory is 
called a superstring theory. (The whimsi- 
cality of the name is more than matched by 
the theory's complexity.) Superstring the- 

ories are encouraging because some of them 
reduce, in a certain limit, to the only super- 
gravity theories that are likely to generalize 
the standard model. Moreover, whereas 
supergravity fails to give the standard model 
exactly, a superstring theory might succeed. 
It seems that superstring theories can be 
formulated only in ten dimensions. 

Figure 1 provides a road map for this 
essay, which journeys from the origins of the 
standard model in classical theory to the 
extensions of the standard model in super- 
gravity and superstrings. These extensions 
may provide extremely elegant ways to unify 
the standard model and are therefore attract- 
ing enormous theoretical interest. It must be 
cautioned, however, that at present no ex- 
perimental evidence exists for supersym- 
metry or extra dimensions. 

Review of the Standard Model 

We now review the standard model with 
particular emphasis on its potential for being 
unified by a larger theory. Over the last 
several decades relativistic quantum field 
theories with local symmetry have succeeded 
in describing all the known interactions 
down to the smallest distances that have 
been explored experimentally, and they may 
be correct to much shorter distances. 

Electrodynamics and Local Symmetry. Elec- 
trodynamics was the first theory with local 
symmetry. Maxwell's great unification of 
electricity and magnetism can be viewed as 
the discovery that electrodynamics is de- 
scribed by the simplest possible local sym- 
metry, local phase invariance. Maxwell's ad- 
dition of the displacement current to the field 
equations, which was made in order to insure 
conservation of the electromagnetic current, 
turns out to be equivalent to imposing local 
phase invariance on the Lagrangian of elec- 
trodynamics, although this idea did not 
emerge until the late 1920s. 

A crucial feature of locally symmetric 
quantum field theories is this: typically, for 
each independent internal local symmetry 

there exists a gauge field and its correspond- 
ing particle, which is a vector boson (spin-1 
particle) that mediates the interaction be- 
tween particles. Quantum electrodynamics 
has just one independent local symmetry 
transformation, and the photon is the vector 
boson (or gauge particle) mediating the inter- 
action between electrons or other charged 
particles. Furthermore, the local symmetry 
dictates the exact form of the interaction. 
The interaction Lagrangian must be of the 
form eJqx^Jx), where J^(x) is the current 
density of the charged particles and Au(x) is 
the field of the vector bosons. The coupling 
constant e is defined as the strength with 
which the vector boson interacts with the 
current. The hypothesis that all interactions 
are mediated by vector bosons or, equi- 
valently, that they originate from local sym- 
metries has been extended to the weak and 
then to the strong interactions. 

Weak Interactions. Before the present under- 
standing of weak interactions in terms of 
local symmetry, Fermi's 1934 phenomeno- 
logical theory of the weak interactions had 
been used to interpret many data on nuclear 
beta decay. After it was modified to include 
parity violation, it contained all the crucial 
elements necessary to describe the low- 
energy weak interactions. His theory as- 
sumed that beta decay (e.g., n - p + e + <) 
takes place at a single space-time point. The 
form of the interaction amplitude is a prod- 
uct of two currents J X ,  where each current 
is a product of fermion fields, and J^Ju. de- 
scribes four fermion fields acting at the point 
of the beta-decay interaction. This ampli- 
tude, although yielding accurate predictions 
at low energies, is expected to fail at center- 
of-mass energies above 300 GeV, where it 
predicts cross sections that are larger than 
allowed by the general principles of quantum 
field theory. 

The problem of making a consistent (re- 
normalizable) quantum field theory to de- 
scribe the weak interactions was not solved 
until the 1960s, when the electromagnetic 
and weak interactions were combined into a 
locally symmetric theory. As outlined in Fig. 
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Toward a Unified Theory 

Fig. 2. Comparison of neutrino-quark charged-current scattering in the Fermz 
theory and the modern SU(2) X U(l) electroweak theory. (The bar indicates the 
Dirac conjugate.) The point interaction of the Fermi theory leads to an inconsistent 
quantum theory. The W + boson exchange in the electroweak theory spreads out the 
weak interactions, which then leads to a consistent (renormalizable) quantum field 
theory. Jr* and J '> are the charge-raising and charge-lowering currents, respec- 
tively. The amplitudes given by the two theories are nearly equal as long as the 
square of the momentum transfer, q2 = (p,, - pJ2, is much less than the square of 
the mass of the weak boson, M 3 .  

2, the vector bosons associated with the elec- 
troweak local symmetry serve to spread out 
the interaction of the Fermi theory in space- 
time in a way that makes the theory consis- 
tent. Technically, the major problem with 
the Fermi theory is that the Fermi coupling 
constant, Gv, is not dimensionless (Gp = 

(293 G~v)"*), and therefore the Fermi theory 
is not a renorrnalizable quantum field the- 
ory. This means that removing the infinities 
from the theory strips it of all its predictive 
power. 

In the gauge theory generalization of 
Fermi's theory, beta decay and other weak 
interactions are mediated by heavy weak 
vector bosons, so the basic interaction has 
the form gW^-Ju and the current-current in- 
teraction looks pointlike only for energies 
much less than the rest energy of the weak 
bosons. (The coupling g is dimensionless, 
whereas Gv is a composite number that in- 
cludes the masses of the weak vector bosons.) 
The theory has four independent local sym- 
metries, including the phase symmetry that 
yields electrodynamics. The local symmetry 
group of the electroweak theory is SU(2) X 
U(l), where U(1) is the group of phase trans- 
formations, and SU(2) has the same struc- 
ture as rotations in three dimensions. The 
one phase angle and the three independent 
angles of rotation in this theory imply the 
existence of four vector bosons, the photon 
plus three weak vector bosons, w"^, z', and 
W .  These four particles couple to the four 
SU(2) X U(1) currents and are responsible 
for the "electroweak" interactions. 

The idea that all interactions must be de- 
rived from local symmetry may seem simple, 
but it was not at all obvious how to apply this 
idea to the weak (or the strong) interactions. 
Nor was it obvious that electrodynamics and 
the weak interactions should be part of the 
same lpcal symmetry since, experimentally, 
the weak bosons and the photon do not share 
much in common: the photon has been 
known as a physical entity for nearly eighty 
years, but the weak vector bosons were not 
observed until late 1982 and early 1983 at the 
CERN proton-antiproton collider in the 
highest energy accelerator experiments ever 
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Any Charged Particle 

performed; the mass of the photon is consis- 
tent with zero, whereas the weak vector bos- 
ons have huge masses (a little less than 100 
G ~ v / c ~ ) ;  electromagnetic interactions can 
take place over very large distances, whereas 
the weak interactions take place on a dis- 
tance scale of about 1 016 centimeter; and 
finally, the photon has no electric charge, 
whereas the weak vector bosons carry the 
electric and weak charges of the electroweak 
interactions. Moreover, in the early days of 
gauge theories, it was generally believed, al- 
though incorrectly, that local symmetry of a 
Lagrangian implies masslessness for the vec- 
tor bosons. 

How can particles as different as the 
photon and the weak bosons possibly be 
unified by local symmetry? The answer is 
explained in detail in the Lecture Notes; we 
mention here merely that if the vacuum of 
a locally symmetric theory has a nonzero 
symmetry charge density due to the 
presence of a spinless field, then the vector 
boson associated with that symmetry ac- 
quires a mass. Solutions to the equations of 
motion in which the vacuum is not invariant 
under symmetry transformations are called 
spontaneously broken solutions, and the vec- 
tor boson mass can be arbitrarily large 
without upsetting the symmetry of the La- 
grangian. 

In the electroweak theory spontaneous 
symmetry breaking separates the weak and 
electromagnetic interactions and is the most 
important mechanism for generating masses 
of the elementary particles. In the theories 
dicussed below, spontaneous symmetry 
breaking is often used to distinguish interac- 
tions that have been unified by extending 
symmetries (see Note 8). 

The range of validity of the electroweak 
theory is an important issue, especially when 
considering extensions and generalizations 
to a theory of broader applicability. "Range 
of validity" refers to the energy (or distance) 
scale over which the predictions of a theory 
are valid. The old Fermi theory gives a good 
account of the weak interactions for energies 
less than 50 GeV, but at higher energies, 
where the effect of the weak bosons is to 
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spread out the weak interactions in space- 
time, the Ferrni theory fails. The electroweak 
theory remains a consistent quantum field 
theory at energies far above a few hundred 
GeV and reduces to the Fermi theory (with 
the modification for parity violation) at 
lower energies. Moreover, it correctly 
predicts the masses of the weak vector bos- 
ons. In fact, until experiment proves other- 
wise, there are no logical impediments to 
extending the electroweak theory to an 
energy scale as large as desired. Recall the 
example of electrodynamics and its quan- 
tum-mechanical generalization. As a theory 
of light in the mid-19th century, it could be 
tested to about 1 O 5  centimeter. How could it 
have been known that QED would still be 
valid for distance scales ten orders of magni- 
tude smaller? Even today it is not known 
where quantum electrodynamics breaks 
down, 

Strong Interactions. Quantum chromo- 
dynamics is the candidate theory of the 
strong interactions. It, too, is a quantum field 
theory based on a local symmetry; the sym- 
metry, called color SU(3), has eight inde- 
pendent kinds of transformations, and so the 
strong interactions among the quark fields 
are mediated by eight vector bosons, called 
gluons. Apparently, the local symmetry of 
the strong interaction theory is not spon- 
taneously broken. Although conceptually 
simpler, the absence of symmetry breaking 
makes it harder to extract experimental 
predictions. The exact SU(3) color symmetry 
may imply that the quarks and gluons, which 
carry the SU(3) color charge, can never be 
observed in isolation. There seem to be no 
simple relationships between the quark and 
gluon fields of the theory and the observed 
structure of hadrons (strongly interacting 
particles). The quark model of hadrons has 
not been rigorously derived from QCD. 

One of the main clues that quantum 
chromodynamics is correct comes from the 
results of "deep" inelastic scattering experi- 
ments in which leptons are used to probe the 
structure of protons and neutrons at very 
short distance intervals. The theory predicts 



that at very high momentum transfers or, 
equivalently, at very short distances (<I 0 1 3  
centimeter) the quark and gluon fields that 
make up the nucleons have a direct and 
fundamental interpretation: they are almost 
noninteracting, point-like particles. Deep in- 
elastic electron, muon, and neutrino experi- 
ments have tested the short-distance struc- 
ture of protons and neutrons and have con- 
firmed qualitatively this short-distance 
prediction of quantum chromodynamics. At 
relatively long distance intervals of 1013 
centimeter or greater, the theory must ac- 
count for the existence of the observed 
hadrons, which are complicated composites 
of the quark and gluon fields. Until progress 
is made in deriving the list of hadrons from 
quantum chromodynamics, we will not 
know whether it is the correct theory of the 
strong interactions. This is a rather peculiar 
situation: the validity of QCD at energies 
above a few GeV is established (and there is 
no experimental or theoretical reason to 
limit the range of validity of the theory at 
even higher energies), but the long-distance 
(low-energy) structure of the theory, includ- 
ing the hadron spectrum, has not yet been 
calculated. Perhaps the huge computational 
effort now being devoted to testing the the- 
ory will resolve this question soon. 

Gravity. Gravity theory (and by this is meant 
Einstein's theory of general relativity) should 
be added to the standard model, although it 
has a different status from the electroweak 
and strong theories. The energy scale at 
which gravity becomes strong, according to 
Einstein's (or Newton's) theory, is far above 
the electroweak scale: it is given by the 
Planck mass, which is defined as ( h c / W 2 ,  
where GN is Newton's gravitational constant, 
and is equal to 1.2 X 1019 G ~ v / c ~ .  (In quan- 
tum theories distance is inversely propor- 
tional to energy; the Planck mass cor- 
responds to a length (the Planck length) of 
1.6 X centimeter.) Large mass scales 
are typically associated with small interac- 
tion rates, so gravity has a negligible effect on 
high-energy particle physics at present ac- 
celerator energies. The reason we feel the 

effect of this very weak interaction so readily 
in everyday life is that the graviton, which 
mediates the interaction, is massless and has 
long-range interactions like the photon. 
Moreover, the gravitational force has always 
been found to be attractive; matter in bulk 
cannot be "gravitationally neutral" in the 
way that it is typically electrically neutral. 

At present there are no experimental 
reasons that compel us to include gravity in 
the standard model; present particle 
phenomenology is explained without it. 
Moreover, its theoretical standing is shaky, 
since all attempts to formulate Einstein's 
gravity as a consistent quantum field theory 
have failed. The problem is similar to that of 
the Fermi theory: Newton's constant has 
dimensions of (energy)2 so the theory is not 
renormalizable. However, like the Ferrni the- 
ory, it is valid up to an energy that is a 
substantial fraction of its energy scale of 1019 
GeV. This is the only known serious in- 
consistency in the standard model when 
gravity is included. Thus, including gravity 
in the standard model seems to pose many 
problems. Yet, there is a good reason to 
attempt this unification: there exist theoreti- 
cal models (as we discuss later) that suggest 
that the electroweak and strong theories may 
cure the ills of gravitational theory, and uni- 
fication with gravity may require a theory 
that predicts the phenomenological inputs of 
the electroweak and strong theories. 

The mathematical structure of gravity the- 
ory provides another reason for its inclusion 
in the standard model. Like the other interac- 
tions, gravity is based on a local symmetry, 
the Poincare symmetry, which includes 
Lorentz transformations and space-time 
translations. In this case, however, not all the 
generators of the symmetry group give rise to 
particles that mediate the gravitational inter- 
action. In particular, Einstein's theory has no 
kinetic energy terms in the Lagrangian for 
the gauge fields corresponding to the six in- 
dependent symmetries of the Lorentz group. 
The space-time translations have associated 
with them the gauge field called the graviton 
that mediates the gravitational interaction. 
The graviton field has a spin of 2 and is 

denoted by e*), where the vector index p. 
on the usual boson field is combined with the 
space-time translation index a to form a spin 
of 2. The metric tensor is, essentially, the 
square of e3x). The massless graviton has 
two helicities (spin projections along the 
direction of motion) of values k2. In some 
ways these are merely technical differences, 
and gravity is like the other interactions. 
Nevertheless, these differences are crucial in 
the search for theories that unify gravity with 
the other interactions. 

Summary. Let us summarize why the stan- 
dard model including gravity may be the 
correct set of component theories of a truly 
unified theory. 

0 The standard model (with its phenomeno- 
logically motivated symmetries, choice of 
fields, and Lagrangian) correctly accounts 
for all elementary-particle data. 

0 The standard model contains no known 
mathematical inconsistencies up to an 
energy scale near 1019 GeV, and then only 
gravity gives difficulty. 

0 All components of the standard model 
have similar mathematical structures. Es- 
sentially, they are local gauge theories, 
which can be derived from a principle of 
local symmetry. 

0 There are no logical or phenomenological 
requirements that force the addition of 
further components to describe phe- 
nomena at scales greater than 1 016 cen- 
timeter. Thus, we are free to seek theories 
with a range of validity that may tran- 
scend the present experimental frontier. 

We still have to cope with the huge ex- 
trapolation, by seventeen orders of magni- 
tude, in energy scale necessary to include 
gravity in the theory. At best it appears reck- 
less to begin the search for such a unification, 
in spite of the good luck historically with 
quantum electrodynamics. However, even if 
we ignore gravity, the energy scales en- 
countered in attempts to unify just the elec- 
troweak and strong interactions are surpris- 
ingly close to the Planck mass. These more 
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Fig. 3. Unification in the SU(5) model. The values of the SU(2), U(l),  and SU(3) 
couplings in the SU(5) model are shown as functions of mass scale. These values 
are calculated using the renormalization group equations of quantum field theory. 
At the unification energy scale the proton-decay bosons begin to contribute to the 
renormalization group equations; at higher energies, the ratios track together along 
the solid curve. If the high-mass bosons were not included in the calculation, the 
couplings would follow the dashed curves. 

modest efforts to unify the fundamental in- 
teractions may be an important step toward 
including gravity. Moreover, these efforts re- 
quire the belief that local gauge theories are 
correct to distance intervals around 1 o~~ 
centimeter, and so they have made theorists 
more "comfortable" when considering the 
extrapolation to gravity, which is only four 
orders of magnitude further. Whether this 
outlook has been misleading remains to be 
seen. The components of the standard model 
are summarized in Table 1. 

Electroweak-Strong Unification 
without Gravity 

The SU(2) X U(1) X SU(3) local theory is a 
detailed phenomenological framework in 
which to analyze and correlate data on elec- 
troweak and strong interactions, but the 
choice of symmetry group, the charge assign- 
ments of the scalars and fermions, and the 
values of many masses and couplings must 
be deduced from experimental data. The 
problem is to find the simplest extension of 
this part of the standard model that also 
unifies (at least partially) the interactions, 
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assignments, and parameters that must be 
put into it "by hand." Total success at uni- 
fication is not required at this stage because 
the range of validity will be restricted by 
gravitational effects. 

One extension is to a local symmetry 
group that includes SU(2) X U(1) X SU(3) 
and interrelates the transformations of the 
standard model by further internal sym- 
metry transformations. The simplest exam- 
ple is the group SU(5), although most of the 
comments below also apply to other 
proposals for electroweak-strong unification. 
The SU(5) local symmetry implies new con- 
straints on the fields and parameters in the 
theory. However, the theory also includes 
new interactions that mix the electroweak 
and strong quantum numbers; in SU(5) there 
are vector bosons that transform quarks to 
leptons and quarks to antiquarks. These vec- 
tor bosons provide a mechanism for proton 
decay. 

If the SU(5) local symmetry were exact, all 
the couplings of the vector bosons to the 
symmetry currents would be equal (or re- 
lated by known factors), and consequently 
the proton decay rate would be near the weak 

decay rates. Spontaneous symmetry breaking 
of SU(5) is introduced into the theory to 
separate the electroweak and strong interac- 
tions from the other SU(5) interactions as 
well as to provide a huge mass for the vector 
bosons mediating proton decay and thereby 
reduce the predicted decay rate. To satisfy 
the experimental constraint that the proton 
lifetime be at least lo3' years, the masses of 
the heavy vector bosom in the SU(5) model 
must be at least 1014 Gev/c2. Thus, ex- 
perimental facts already determine that the 
electroweak-strong unification must in- 
troduce masses into the theory that are 
within a factor of lo5 of the Planck mass. 

It is possible to calculate the proton life- 
time in the SU(5) model and similar unified 
models from the values of the couplings and 
masses of the particles in the theory. The 
couplings of the standard model (the two 
electroweak couplings and the strong cou- 
pling) have been measured in low-energy 
processes. Although the ratios of the cou- 
plings are predicted by SU(5), the symmetry 
values are accurate only at energies where 
SU(5) looks exact, which is at energies above 
the masses of the vector bosons mediating 
proton decay. In general, the strengths of the 
couplings depend on the mass scale at which 
they are measured. Consequently, the SU(5) 
ratios cannot be directly compared with the 
values measured at low energy. However, the 
renormalization group equations of field the- 
ory prescribe how they change with the mass 
scale. Specifically, the change of the coupling 
at a given mass scale depends only on all the 
elementary particles with masses less than 
that mass scale. Thus, as the mass scale is 
lowered below the mass of the protondecay 
bosons, the latter must be omitted from the 
equations, so the ratios of the couplings 
change from the SU(5) values. If we assume 
that the only elementary fields contributing 
to the equations are the low-mass fields 
known experimentally and if the proton- 
decay bosons have a mass of 1014 G ~ V / C ~  
(see Fig. 3), then the low-energy experimen- 
tal ratios of the standard model couplings are 
predicted correctly by the renormalization 
group equations but the proton lifetime 
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prediction is a little Less than the experimen- 
tal lower bound. However, adding a few 
more "low-mass" (say, less than 1012 
G ~ v / c ~ )  particles to the equations lengthens 
the lifetime predictions, which can thereby 
be pushed well beyond the limit attainable in 
present-day experiments. 

Thus, using the proton-lifetime bound 
directly and the standard model couplings at 
low mass scale, we have seen that elec- 
troweak-strong unification implies mass 
scales close to the scale where gravity must 
be included. Even if it turns out that the 
electroweak-strong unification is not exactly 
correct, it has encouraged the extrapolation 
of present theoretical ideas well beyond the 
energies available in present accelerators. 

Electroweak-strong unified models such as 
SU(5) achieve only a partial unification. The 
vector bosons are fully unified in the sense 
that they and their interactions are de- 
termined by the choice of SU(5) as the local 
symmetry. However, this is only a partial 
unification. The choice of fermion and scalar 
multiplets and the choice of symmetry- 
breaking patterns are left to the discretion of 
the physicist, who makes his selections based 
on low-energy phenomenology. Thus, the 
"unification" in SU(5) (and related local 
symmetries) is far from complete, except for 
the vector bosons. (This suggests that the- 
ories in which all particles are more closely 
related to the vector bosons might remove 
some of the arbitrariness; this will prove to 
be the case for supergravity.) 

In summary, strong experimental evi- 
dence for electroweak-strong unification, 
such as proton decay, would support the 
study of quantum field theories at energies 
just below the Planck mass. From the van- 
tage of these theories, the electroweak and 
strong interactions should be the low-energy 
limit of the unifying theory, where "low 
energy" corresponds to the highest energies 
available at accelerators today! Only future 
experiments will help decide whether the 
standard model is a complete low-energy 
theory, or whether we are repeating the age- 
old error of omitting some low-energy inter- 
actions that are not yet discovered. Never- 

theless, the quest for total unification of the example, the orbits of the planets are 
laws of Nature is exciting enough that these geodesics of the space-time whose geometry 
words of caution are not sufficient to delay is determined by the sun's gravitational field. 
the search for theories incorporating gravity. In Einstein's gravity all the remaining 

fields are called matter fields. The La- 
grangian is a sum of two terms: 

Toward Unification with Gravity 

Let us suppose that the standard model 
including gravity is the correct set of theories 
to be unified. On the basis of the previous 
discussion, we also accept the hypothesis that 
quantum field theory with local symmetry is 
the correct theoretical framework for ex- 
trapolating physical theory to distances per- 
haps as small as the Planck length. Quantum 
field theory assumes a mathematical model 
of space-time called a manifold. On large 
scales a manifold can have many different 
topologies, but at short enough distance 
scale, a manifold always looks like a flat 
(Minkowski) space, with space and time in- 
finitely divisible. This might not be the struc- 
ture of space-time at very small distances, 
and the manifold model of space-time might 
fail. Nevertheless, all progress at unifying 
gravity and the other interactions described 
here is based on theories in which space-time 
is assumed to be a manifold. 

Einstein's theory of gravity has fascinated 
physicists by its beauty, elegance, and correct 
predictions. Before examining efforts to ex- 
tend the theory to include other interactions, 
let us review its structure. Gravity is a 
"geometrical" theory in the following sense. 
The shape or geometry of the manifold is 
determined by two types of tensors, called 
curvature and torsion, which can be con- 
structed from the gravitational field. The 
Lagrangian of the gravitational field depends 
on the curvature tensor. In particular, Ein- 
stein's brilliant discovery was that the 
curvature scalar, which is obtained from the 
curvature tensor, is essentially a unique 
choice for the kinetic energy of the gravita- 
tional field. The gravitational field calculated 
from the equations of motion then de- 
termines the geometry of the space-time 
manifold. Particles travel along "straight 
lines" (or geodesics) in this space-time. For 

= g r a v i t y  "'Â¥matte > 

where the curvature scalar =Ygravity is the 
kinetic energy of the graviton, and Smatter 
contains all the other fields and their inter- 
actions with the gravitational field. The in- 
teraction term in the Lagrangian, which cou- 
ples the gravitational field (the metric tensor) 
to the energy-momentum tensor, has a form 
almost identical to the term that couples the 
electromagnetic field to the electromagnetic 
current. Newton's constant, which has 
dimensions of ( m a ~ s ) ~ ,  appears in the ratio 
of the two terms in Eq. 1 as a coupling 
analogous to the Fermi coupling in the weak 
theory. This complicates the quantum gen- 
eralization, just as it did in Fermi's weak 
interaction theory, and it is not possible to 
formulate a consistent quantum theory with 
Eq. 1. Actually, the situation is even worse, 
because Pgravity alone does not lead to a 
consistent quantum theory either, although 
the inconsistencies are not as bad as when 
LPmatler is included. 

This suggests that our efforts to unify grav- 
ity with the other interactions might solve 
the problems of gravity: perhaps we can join 
the matter fields together with the gravita- 
tional field in something like a curvature 
scalar and thereby eliminate smaueP In addi- 
tion, generalizing the graviton field in this 
way might lead to a consistent (re- 
normalizable) quantum theory of gravity. 
There are reasons to hope that the problem 
of finding a renormalizable theory of gravity 
is solved by superstrings, although the proof 
is far from complete. For now, we discuss the 
unification of the graviton with other fields 
without concern for renormalizability. 

We will discuss several ways to find rnani- 
folds for which the curvature scalar depends 
on many fields, not just the gravitational 
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Fig. 4- Twa+ifBÃ ênsiona analogue of the vacuum geometfy of a Kalmpa-Klem 
thwry* From great distances the geometry looks one-dimensional, but up close the 
second dimension  ̂which is wound up la a circlej becomes visible. If space4me has 
more than four dimensions, then the extra dimensions could haveescaped detectio~ 
ifeach is wound into a circle whose radius is las that I@' centimeter. 

field* This generally requires extending the 4- 
dUnensional spat^-time manifold. The fields 
and manifold must satisfy many constraints 
before this cab be done. All the efforts to 
unify gravity with the other interactions have 
been formulated in this way, but progrÃ§ss 
was not made until the role of spontaneous 
symflietry breaking was appreciated. As we 
now descrilife it is crucial for the solutions of 
the theory to have less symmetry than the 
Lagrangian has. 

In the standard model the generatois of 
the space-time P o i n 4  symmetry commute 
with (ate indegendent of) the generators of 
the internal symmetries of the dectraweak 
and strong interactions. We mi@1 look for a 
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local symmetry that interrelates the space- 
tune and internal symmetries, just as SU(5) 
interrelates the electreweafc and strong inter- 
nal symmetries. Unfortunately, if this 
enlarged synmetry changes sinmitanmusly 
the internal asd spaee-time quantum 
numbers of several states of (he same mass, 
then a theorem of quantum field theory ve- 
quires the existence of an infinite niamber of 
particles of that mass. However, this seem- 
ingly catastrophic result does not prevent the 
unification of space-time and internal sym- 
metries for two reasons: first, all symmetries 
of the Lagrangian need not be symmetries of 
the states because of spontaneous symmetry 
b d f t g ;  and second, the theorem does not 

If the dimensionality of space-time is 
greater than four, then the geometry of space- 
time must satisfy some strong observational 
constraints. In a 5-dimensional world the 
fourth spatial direction must be invisible to 
present experiments. This is possible if at 
each 4dimensional space-time point the ad- 
ditional direction is a little circle, so that a 
tiny person traveling in the new direction 
would soon return to the starting point. The- 
ories with this kind of vacuum geometry are 
generically called Kaluza-Klein theories. 

It is easy to visualize this geometry with a 
two-dimensional analogue, namely, a long 
pipe. The direction around the pipe is 
analogous to the extra dimension, and the 
location along the pipe is analogous to a 
location in 4-dimensional space-time. If the 
means for examining the structure of the 
pipe are too coarse to see distance intervals 
as small as its diameter, then the pipe ap- 
pears ldimensional (Fig. 4). If the probe of 
the structure is sensitive to shorter distances, 
the pipe is a 2-dimensional structure with 
one dimension wound up into a circle. 
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The physically interesting solutions of 
Einstein's 4-dimensional gravity are those in 
which, if all the matter is removed, space- 
time is flat. The 4-dimensional space-time 
we see around us is flat to a good approxima- 
tion; it takes an incredibly massive hunk of 
highdensity (much greater than any density 
observed on the earth) matter to curve space. 
However, it might also be possible to con- 
struct a higher dimensional theory in which 
our 4-dimensional space-time remains flat in 
the absense of identifiable matter, and the 
extra dimensions are wound up into a "little 
ball." We must study the generalizations of 
Einstein's equations to see whether this can 
happen, and ifit does, to find the geometry of 
the extra dimensions. 

The Cosmological Constant Problem. Before 
we examine the generalizations of gravity in 
more detail, we must raise a problem that 
pervades all gravitational theories. Einstein's 
equations state that the Einstein tensor 
(which is derived from the curvature scalar 
in finding the equations of motion from the 
Lagrangian) is proportional to the energy- 
momentum tensor. If, in the absence of all 
matter and radiation, the energy-momentum 
tensor is zero, then Einstein's equations are 
solved by flat space-time and zero gravita- 
tional field. In 4-dimensional classical gen- 
eral relativity, the curvature of space-time 
and the gravitational field result from a 
nonzero energy-momentum tensor due to 
the presence of physical particles. 

However, there are many small effects, 
such as other interactions and quantum ef- 
fects, not included in classical general rel- 
ativity, that can radically alter this simple 
picture. For example, recall that the elec- 
troweak theory is spontaneously broken, 
which means that the scalar field has a 
nonzero vacuum value and may contribute 
to the vacuum value of the energy-mornen- 
turn tensor. If it does, the solution to the 
Einstein equations in vacuum is no longer 
flat space but a curved space in which the 
curvature increases with increasing vacuum 
energy. Thus, the constant value of the po- ' 

tential energy, which had no effect on the 

weak interactions, has a profound effect on 
gravity. 

At first glance, we can solve this difficulty 
in a trivial manner: simply add a constant to 
the Lagrangian that cancels the vacuum 
energy, and the universe is saved. However, 
we may then wish to compute the quantum- 
mechanical corrections to the electroweak 
theory or add some additional fields to the 
theory; both may readjust the vacuum 
energy. For example, electroweak-strong uni- 
fication and its quantum corrections will 
contribute to the vacuum energy. Almost all 
the details of the theory must be included in 
calculating the vacuum energy. So, we could 
repeatedly readjust the vacuum energy as we 
learn more about the theory, but it seems 
artificial to keep doing so unless we have a 
good theoretical reason. Moreover, the scale 
of the vacuum energy is set by the mass scale 
of the interactions. This is a dilemma. For 
example, the quantum corrections to the 
electroweak interactions contribute enough 
vacuum energy to wind up our 4-dimen- 
sional space-time into a tiny ball about 10-I3 
centimeter across, whereas the scale of the 
universe is more like centimeters. Thus, 
the observed value of the cosmological con- 
stant is smaller by a factor of than the 
value suggested by the standard model. 
Other contributions can make the theoretical 
value even larger. This problem has the in- 
nocuous-sounding name of "the cos- 
mological constant problem." At present 
there are no principles from which we can 
impose a zero or nearly zero vacuum energy 
on the 4-dimensional part of the theory, al- 
though this problem has inspired much re- 
search effort. Without such a principle, we 
can safely say that the vacuum-energy 
prediction of the standard model is wrong. 
At best, the theory is not adequate to con- 
front this problem. 

If we switch now to the context of gravity 
theories in higher dimensions, the difficult 
question is not why the extra dimensions are 
wound up into a little ball, but why our 4- 
dimensional space-time is so nearly flat, 
since it would appear that a large cos- 
mological constant is more natural than a 

small one. Also, it is remarkable that the 
vacuum energy winding the extra 
dimensions into a little ball is conceptually 
similar to the vacuum charge of a local sym- 
metry providing a mass for the vector bos- 
ons. However, in the case of the vacuum 
geometry, we have no experimental data that 
bear on these speculations other than the 
remarkable flatness of our 4-dimensional 
space-time. The remaining discussion of uni- 
fication with gravity must be conducted in 
ignorance of the solution to the cosmological 
constant problem. 

Internal Symmetries 
from Extra Dimensions 

The basic scheme for deriving local sym- 
metries from higher dimensional gravity was 
pioneered by Kaluza and ~ l e i n '  in the 1920s, 
before the weak and strong interactions were 
recognized as fundamental. Their attempts 
to unify gravity and electrodynamics in four 
dimensions start with pure gravity in five 
dimensions. They assumed that the vacuum 
geometry is flat 4dimensional space-time 
with the fifth dimension a little loop of de- 
finite radius at each space-time point, just as 
in the pipe analogy of Fig. 4. The Lagrangian 
consists of the curvature scalar, constructed 
from the gravitational field in five 
dimensions with its five independent com- 
ponents. The relationship of a higher dimen- 
sional field to its 4-dimensional fields is sum- 
marized in Fig. 5 and the sidebar, "Fields 
and Spin in Higher Dimensions." The in- 
finite spectrum in four dimensions includes 
the massless graviton (two helicity compo- 
nents of values Â±2) a massless vector boson 
(two helicity components of k l ) ,  a massless 
scalar field (one helicity component of O), 
and an infinite series of massive spin-2 
pyrgons of increasing masses, (The term 
'pyrgon" derives from Ttupyoo, the Greek 
word for tower.) The Fourier expansion for 
each component of the gravitational field is 
identical to Eq. 1 of the sidebar. Since the 
extra dimension is a circle, its symmetry is a 
phase symmetry just as in electrodynamics. 
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Infinite 

the harmonic expansion of the 4-dimensional spin compo- 
nents on the extra dimensions, which then resolves a single 
massless D-dimensional field into an infinite number of 4- 
dimensional fields of varying masses. When the 4-dimen- 
sional mass is zero, the corresponding 4-dimemiunal field is 
called a zero mode. The 4-dimensional fields with 4-dimen- 
sional mass form an in finite sequence of pyrgons. 

The symmetry of this vacuum state is not the 
5-dimensional Poincark symmetry but the 
direct product of the 4-dimensional Poincare 
group and a phase symmetry. 

This skeletal theory should not be taken 
seriously, except as a basis for generalizing to 
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more realistic theories. The zero modes no low-mass charged particles. (Adding fer- 
(massless particles in four dimensions) are mions to the 5-dimensional theory does not 
electrically neutral. Only the pyrgons carry help, because the resulting 4-dimensional 
electric charge. The interaction associated fermions are all pyrgons, which cannot be 
with the vector boson in four dimensions low mass either.) Nevertheless, the 
cannot be electrodynamics because there are hypothesis that all interactions are conse- 



Fields and Spins in 
Fields in Higher Dimensions. We describe here how to construct a 
field in higher dimensions and how such a field is related to fields in 
the 4-dimensional world in which we live. Higher dimensional fields 
unify an infinite number of 4-dimensional fields. A typical and 
simple example of this can be seen from a scalar field (a spin-0 field) 
in five dimensions. A scalar field has only one component, so it can 
be written as q(x,y), where x is the 4-dimnsional space-time 
coordinate and y is the coordinate for the fifth dimension. We will 
assume that the fifth dimension is a little circle with radius R, where 
R is independent of x. (After this example, we examine the gen- 
eralizations to more than five dimensions and to fields carrying 
nonzero spin in the higher dimensions.) 

Functions on a circle can be expanded in a Fourier series; thus, the 
5-dimensional scalar field can be written in the form 

where n is an integer, and (p,,(x) are 4-dimensional fields. The Fourier 
series satisfies the requirement that the field is single-valued in the 
extra dimension, since Eq. 1 has the same value at the identical points 
-Y and y +  2nR. Usually the wave equation of (p(x,y) is a straight- 
forward generalization of the 4-dimensional scalar wave equation 
(that is, the Klein-Gordon equation) in the limit that interactions can 
be ignored. The 5-dimensional Klein-Gordon equation for a massless 
5-dimensional particle is 

The presence of additional terms depends on the details of the 
Lagrangian, and we ignore them for the present description. It is a 
simple matter to substitute the Fourier expansion ofEq. 1 into Eq. 2 
and use the orthogonality of the expansion functions eKp(iny/R) to 
rewrite Eq. 2 as an infinite number of equations in four dimensions, 
one for each <PAX): 

Note the following very important point: for n =  0, Eq. 3 is the 
equation for a massless 4-dimensional scalar field, whereas for n 1s 0, 
Eq, 3 is the wave equation for a particle with mass \n\/R. The 
massless particle, or "zero mode," should correspond to a field 
observable in our world. The fields with nonzero mass are called 
"pyrgons," since they are on a "tower" of particles, one for each n. I Â R is near the Planck length centimeter), then the pyrgons have 
masses on the order of the Planck mass. However, it is also possible 
that R can be much larger, say as large as 1 016 centimeter, without 
conflicting with experience. 

The 4-dimensional form of the Lagrangian depends on an infinite 
number of fields and is very complicated to analyze. For many 
purposes it is helpful to truncate the theory, keeping a specially 
chosen set of fields. For example, 54imensional Einstein gravity is 
simplified by omitting all the pyrgons. This can be achieved by 
requiring that the fields do  not depend on y, a procedure called 
"dimensional reduction." The dimensionally reduced theory should I 

quences of the symmetries of space-time is so 
attractive that efforts to generalize the 
Kaluza-Klein idea have been vigorously 
pursued. These theories require a more com- 
plete discussion of the possible candidate 
manifolds of the extra dimensions. 

The geometry of the extra dimensions in 
the absence of matter is typically a space with 
a high degree of symmetry. Symmetry re- 
quires the existence of transformations in 
which the starting point looks like the point 
reached after the transformation. (For exam- 
ple, the environments surrounding each 
point on a sphere are identical.) Two of the 
most important examples are "group mani- 
folds" and "coset spaces," which we briefly 
describe. 

The tranformations of a continuous group 
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are identified by N parameters, where N is 
the number of independent transformations 
in the group. For example, N = 3 for SU(2) 
and 8 for SU(3). These parameters are the 
coordinates of an N-dimensional manifold. 
If the vacuum values of fields are constant on 
the group manifold, then the vacuum solu- 
tion is said to be symmetric. 

Coset spaces have the symmetry of a group 
too, but the coordinates are labeled by a 
subset of the parameters of a group. For 
example, consider the space SO(3)/SO(2). In 
this example, SO(3) has three parameters, 
and SO(2) is the phase symmetry with one 
parameter, so the coset space SO(3)/SO(2) 
has three minus one, or two, dimensions. 
This space is called the 2-sphere, and it has 
the geometry of the surface of an ordinary 

sphere. Spheres can be generalized to any 
number of dimensions: the N-dimensional 
sphere is the coset space [SOW + l)]/SO(M. 
Many other cosets, or "ratios" of groups, 
make spaces with large symmetries. It is 
possible to find spaces with the symmetries 
of the electroweak and strong interactions. 
One such space is the group manifold SU(2) 
X U(1) X SU(3), which has twelve 
dimensions. More interesting is the lowest 
dimensional space with those symmetries, 
namely, the coset space [SU(3) X SU(2) X 
U(l)]/[SU(2) X U(1) X U(l)], which has 
dimension 8 + 3 + 1 - 3 - 1 - 1 = 7. (The 
SU(2) and the U(1)'s in the denominator 
differ from those in the numerator, so they 
cannot be "canceled.") Thus, one might hope 
that (4 + 7 = 1 1)-dimensional gravity would 
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Higher 
describe the low-energy limit of the theory. 

The gravitational field can be generalized to higher (>5) dimen- 
sional manifolds, where the extra dimensions at each 4-dimensional 
space-time point form a little ball of finite volume. The mathematics 
requires a generalization of Fourier series to "harmonic" expansions 
on these spaces. Each field (or field component if it has spin) unifies 
an infinite set of pyrgons, and the series may also contain some zero 
modes. The terms in the series correspond to fields of increasing 4- 
dimensional mass. just as in the 5-dimensional example. The kinetic 
energy in the extra dimensions of each term in the series then 
corresponds to a mass in our space-time. The higher dimensional 
field quite generally describes mathematically an infinite number of 
4-dimensional fields. 

Spin in Higher Dimensions. The definition of spin in D dimensions 
depends on the D-dimensional Lorentz symmetry; 4-dimensional 
Lorentz symmetry is naturally embedded in the D-dimensional 
symmetry. Consequently a D-dimensional field of a specific spin 
unifies 4-dimensional fields with different spins. 

Conceptually the description of D-dimensional spin is similar to 
that of spin in four dimensions. A massless particle of spin J in four 
dimensions has helicities +J and -./corresponding to the projections 
of spin along the direction of motion. These two helicities are singlet 
multiplets of the 1-dimensional rotations that leave unchanged the 
direction of a particle traveling at the speed of light. The group of 1- 
din~ensional rotations is the phase symmetry S0(2), and this method 
for identifying the physical degrees of freedom is called the "light- 
cone classification." However, the situation is a little more com- 

plicated in five dimensions, where there are three directions or- 
thogonal to the direction of the particle. Then the helicity symmetry 
becomes SO(3) (instead of SO(2)). and the spin multiplets in five 
dimensions group together sets of 4-dimensional helidty. For exam- 
ple. the graviton in five dimensions has five components. The SO(2) 
of four dimensions is contained in this SO(3) symmetry. and the 4- 
dimensional helicities of the 5-dimensional graviton are 2, 1, 0, - 1, 
and -2. 

Quite generally, the light-cone symmetry that leaves the direction 
of motion of a massless particle unchanged in 1) dimensions is 
SO(/-> - 2 ) ,  and the />-dimensional helicity corresponds to the multi- 
plets (or representations) ofSO( I )  - 2). For example, the graviton 
has D(D - 3)/2 independent degrees of freedom in 11 dimensions; 
thus the graviton in eleven dimensions belongs to a 44-component 
representation of SO(9). The SO(?) of the 4-dimensional helicity is 
inside the SO(9). so the forty-four components of the graviton in 
eleven dimensions carry labels of 4-dimensional helicity as follows: 
one component of helicity 2, seven of helicity 1, twenty-eight of 
helicity 0, seven of helicity -1 and one of helicity -2. (The compo- 
nents of the graviton in eleven din~ensions then correspond to the 
gravilon, seven massless vector bosons, and twenty-eight scalars in 
four dimensions.) 

The analysis for massive particles in D dimensions proceeds in 
exactly the same way, except the helicity symmetry is the one that 
leaves a resting particle at rest. Thus, the massive helicity symmetry 
is SO(Â£ - 1). (For example. SO(3) describes the spin of a massive 
particle in ordinary 4-dimensional space-time.) These results are 
summarized in Fig. 5 of the main text. 

unify all known interactions. 
It turns out that the 4-dimensional fields 

implied by the 1 1 -dimensional gravitational 
field resemble the solution to the 5-dimen- 
sional Kaluza-Klein case, except that the 
gravitational field now corresponds to many 
more 4-dimensional fields. There are meth- 
ods of dimensional reduction for group 
manifolds and coset spaces, and the zero 
modes include a vector boson for each sym- 
metry of the extra dimensions. Thus, in the 
(4 + 7)-dimensional example mentioned 
above, there is a complete set of vector bos- 
ons for the standard model. At first sight this 
model appears to provide an attractive uni- 
fication of all the interactions of the standard 
model; it explains the origins of the local 
symmetries of the standard model as space- 
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time symmetries of gravity in eleven 
dimensions. 

Unfortunately, this 1 1 -dimensional 
Kaluza-Klein theory has some shortcomings. 
Even with the complete freedom consistent 
with quantum field theory to add fermions, it 
cannot account for the parity violation seen 
in the weak neutral-current interactions of 
the electron. witten' has presented very gen- 
eral arguments that no 11-dimensional 
Kaluza-Klein theory will ever give the cor- 
rect electroweak theory. 

Supersymmetry and Gravity in 
Four Dimensions 

We return from our excursion into higher 
dimensions and discuss extending gravity 

not by enlarging the space but rather by 
enlarging the symmetry. The local Poincark 
symmetry of Einstein's gravity implies the 
massless spin-2 graviton; our present goal is 
to extend the Poincare symmetry (without 
increasing the number of dimensions) so that 
additional fields are grouped together with 
the graviton. However, this cannot be 
achieved by an ordinary (Lie group) sym- 
metry: the graviton is the only known 
elementary spin-2 field, and the local sym- 
metries of the standard model are internal 
symmetries that group together particles of 
the same spin. Moreover, gravity has an 
exceptionally weak interaction, so if the 
graviton carries quantum numbers of sym- 
metries similar to those of the standard 
model, it will interact too strongly. We can 
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accommodate these facts if the graviton is a 
singlet under the internal symmetry, but then 
its multiplet in this new symmetry must 
include particles of other spins. Supersym- 
metry2 is capable of fulfilling this require- 
ment. 

Four-Dimensional Supersymmetry. Super- 
symmetry is an extension of the Poincar6 
symmetry, which includes the six Lorentz 
generators M,,,, and four translations Pp The 
Poincare generators are boson operators, so 
they can change the spin components of a 
massive field but not the total spin. The 
simplest version of supersymmetry adds fer- 
mionic generators On to the Poincark gen- 
erators; Qa transforms like a spin-% field 
under Lorentz transformations. (The index a 
is a spinor index.) To satisfy the Pauli ex- 
clusion principle, fermionic operators in 
quantum field theory always satisfy anticom- 
mutation relations, and the supersymmetry 
generators are no exception. In the algebra 
the supersymmetry generators Qn anticom- 
mute to yield a translation 

where Pu is the energy-momentum 4-vector 
and the ytp are matrix elements of the Dirac 
y matrices. 

The significance of the fermionic gen- 
erators is that they change the spin of a state 
or field by Â±\h that is, supersymmetry uni- 
fies bosons and fermions. A multiplet of 
"simple" supersymmetry (a supersymmetry 
with one ferrnionic generator) in four 
dimensions is a pair of particles with spins J 
and J- V2; the supersymmetry generators 
transform bosonic fields into fermionic 
fields and vice versa. The boson and fermion 
components are equal in number in all super- 
symmetry multiplets relevant to particle the- 
ories. 

We can construct larger supersymmetries 
by adding more fermionic generators to the 
Poincar6 symmetry. "N-extended" super- 
symmetry has N fermionic generators. By 
applying each generator to the state of spin J, 

we can lower the helicity up to N times. 
Thus, simple supersymmetry, which lowers 
the helicity just once, is called N = 1 super- 
symmetry. N = 2 supersymmetry can lower 
the helicity twice, and the N == 2 multiplets 
have spins J, J- V2, and J - 1. There are 
twice as many J - l/2 states as J or J - 1, so 
that there are equal numbers of fermionic 
and bosonic states. The N = 2 multiplet is 
made up of two N = 1 multiplets: one with 
spins J and J- V2 and the other with spins 
J- 112 and J- 1. 

In principle, this construction can be ex- 
tended to any N, but in quantum field theory 
there appears to be a limit. There are serious 
difficulties in constructing simple field the- 
ories with spin 5/2 or higher. The largest 
extension with spin 2 or less has N = 8. In N 
= 8 extended supersymmetry, there is one 
state with helicity of 2, eight with 312, 
twenty-eight with 1, fifty-six with 112, sev- 
enty with 0, fifty-six with -112, twenty-eight 
with -1, eight with 312 and one with -2. 
This multiplet with 256 states will play an 
important role in the supersymmetric the- 
ories of gravity or supergravity discussed 
below. Table 2 shows the states of N-ex- 
tended supersymmetry. 

Theories with Supersymmetry. Rather or- 
dinary-looking Lagrangians can have super- 
symmetry. For example, there is a La- 
grangian with simple global supersyrnmetry 
in four dimensions with a single Majorana 
fermion, which has one component with 
helicity +1/2, one with helicity -112, and 
two spinless particles. Thus, there are two 
bosonic and two fermionic degrees of free- 
dom. The supersymmetry not only requires 
the presence of both ferrnions and bosons in 
the Lagrangian but also restricts the types of 
interactions, requires that the mass 
parameters in the multiplet be equal, and 
relates some other parameters in the La- 
grangian that would otherwise be un- 
constrained. 

The model just described, the Wess- 
Zumino model,3 is so simple that it can be 
written down easily in conventional field 
notation. However, more realistic supersym- 

metric Lagrangians take pages to write down. 
We will avoid this enormous complication 
and limit our discussion to the spectra of 
particles in the various theories. 

Although supersymmetry may be an exact 
symmetry of the Lagrangian, it does not ap- 
pear to be a symmetry of the world because 
the known elementary particles do not have 
supersymmetric partners. (The photon and a 
neutrino cannot form a supermultiplet be- 
cause their low-energy interactions are dif- 
ferent.) However, like ordinary symmetries, 
the supersymmetries of the Lagrangian do 
not have to be supersymmetries of the 
vacuum: supersymmetry can be spon- 
taneously broken. The low-energy predic- 
tions of spontaneously broken supersym- 
metric models are discussed in "Supersym- 
metry at 100 GeV." 

Local Supersymmetry and Supergravity. 
There is a curious gap in the spectrum of the 
spin values of the known elementary parti- 
cles. Almost all spins less than or equal to 2 
have significant roles in particle theory: 
spin-1 vector bosons are related to the local 
internal symmetries; the spin-2 graviton 
mediates the gravitational interaction; low- 
mass spin-% fermions dominate low-energy 
phenomenology; and spinless fields provide 
the mechanism for spontaneous symmetry 
breaking. All these fields are crucial to the 
standard model, although there seems to be 
no relation among the fields of different spin. 
A spin of 3/2 is not required phenomenologi- 
cally and is missing from the list. If the 
supersymmetry is made local, the resulting 
theory is supergravity, and the spin-2 gravi- 
ton is accompanied by a b'gravitinoyy with 
spin 312. 

Local supersymmetry can be imposed on a 
theory in a fashion formally similar to the 
local symmetries of the standard model, ex- 
cept for the additional complications due to 
the fact that supersymmetry is a space-time 
symmetry. Extra gauge fields are required to 
compensate for derivatives of the space- 
timedependent parameters, so, just as for 
ordinary symmetries, there is a gauge particle 
corresponding to each independent super- 
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symmetry transformation. However, the 
gauge particles associated with the supersym- 
metry generators must be ferrnions. Just as 
the graviton has spin 2 and is associated with 
the local translational symmetry, the gravi- 
tino has spin 312 and gauges the local super- 
symmetry. The graviton and gravitino form 
a simple (N = 1) supersymmetry multiplet. 
This theory is called simple supergravity and 
is interesting because it succeeds in unifying 
the graviton with another field. 

The Lagrangian of simple supergravity4 is 
an extension of Einstein's Lagrangian, and 
one recovers Einstein's theory when the 
gravitational interactions of the gravitino are 
ignored. This model must be generalized to a 
more realistic theory with vector bosons, 

LOS ALAMOS SCIENCE Summer/Fall1984 

spin-% ferrnions, and spinless fields to be of 
much use in particle theory. 

The generalization is to Lagrangians with 
extended local supersymmetry, where the 
largest spin is 2. The extension is extremely 
complicated. Nevertheless, without much 
work we can surmise some features of the 
extended theory. Table 2 shows the spectrum 
of particles in N-extended supergravity. 

We start here with the largest extended 
supersymmetry and investigate whether it 
includes the electroweak and strong interac- 
tions. In N = 8 extended supergravity the 
spectrum is just the N = 8 supersymmetric 
multiplet of 256 helicity states discussed 
before. The massless particles formed from 
these states include one graviton, eight gravi- 

tinos, twenty-eight vector bosons, fifty-six 
fermions, and seventy spinless fields. 

N= 8 supergravity5 is an intriguing theory. 
(Actually, several different N = 8 super- 
gravity Lagrangians can be constructed.) It 
has a remarkable set of internal symmetries, 
and the choice of theory depends on which of 
these symmetries have gauge particles as- 
sociated with them. Nevertheless, super- 
gravity theories are highly constrained and 
we can look for the standard model in each. 
We single out one of the most promising 
versions of the theory, describe its spectrum, 
and then indicate how close it comes to 
unifying the electroweak, strong, and gravita- 
tional interactions. 

In the N = 8 supergravity of de Wit- 
Nicolai theory6 the twenty-eight vector bos- 
ons gauge an SO(8) symmetry found by 
Cremmer and ~ u l i a . ~  Since the standard 
model needs just twelve vector bosons, 
twenty-eight would appear to be plenty. In 
the fermion sector, the eight gravitinos must 
have fairly large masses in order to have 
escaped detection. Thus, the local supersym- 
metry must be broken, and the gravitinos 
acquire masses by absorbing eight spin-% 
fermions. This leaves 56 - 8 = 48 spin-% 
fermion fields. For the quarks and leptons in 
the standard model, we need forty-five fields, 
so this number also is sufficient. 

The next question is whether the quantum 
numbers of SO(8) correspond to the elec- 
troweak and strong quantum numbers and 
the spin4" ferrnions to quarks and leptons. 
This is where the problems start: if we 
separate an SU(3) out of the SO(8) for QCD, 
then the only other independent interactions 
are two local phase symmetries of U(1) X 
U(l), which is not large enough to include 
the SU(2) X U(l) of the electroweak theory. 
The rest of the SO(8) currents mix the SU(3) 
and the two U(l)'s. Moreover, many of the 
fifty-six spin-Y~ fermion states (or forty-eight 
if the gravitinos are massive) have the wrong 
SU(3) quantum numbers to be quarks and 
leptons.' Finally, even if the quantum 
numbers for QCD were right and the elec- 
troweak local symmetry were present, the 
weak interactions could still not be ac- 
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counted for. No mechanism in this theory 
can guarantee the almost purely axial weak 
neutral current of the electron. Thus this 
interpretation of N = 8 supergravity cannot 
be the ultimate theory. Nevertheless, this is a 
model of unification, although it gave the 
wrong sets of interactions and particles. 

Perhaps the 256 fields do not correspond 
directly to the observable panicles, but we 
need a more sophisticated analysis to find 
them. For example, there is a "hidden" local 
SU(8) symmetry, independent of the gauged 
SO(8) mentioned above, that could easily 
contain the electroweak and strong interac- 
tions. It is hidden in the sense that the La- 
grangian does not contain the kinetic energy 
terms for the sixty-three vector bosons of 
SU(8). These sixty-three vector bosons are 
composites of the elementary supergravity 
fields, and it is possible that the quantum 
corrections will generate kinetic energy 
terms. Then the fields in the Lagrangian do 
not correspond to physical particles; instead 
the photon, electron, quarks, and so on, 
which look elementary on a distance scale of 
present experiments, are composite. Un- 
fortunately, it has not been possible to work 
out a logical derivation of this kind of result 
for N = 8 supergravitye8 

In summary, N = 8 supergravity may be 
correct, but we cannot see how the standard 
model follows from the Lagrangian. The 
basic fields seem rich enough in structure to 
account for the known interactions, but in 
detail they do not look exactly like the real 
world. Whether N = 8 supergravity is the 
wrong theory, or is the correct theory and we 
simply do not know how to interpret it, is not 
yet known. 

Supergravity in Eleven 
Dimensions 

The apparent phenomenological short- 
comings of N = 8 supergravity have been 
known for some time, but its basic mathe- 
matical structure is so appealing that many 
theorists continue to work on it in hope that 

some variant will give the electroweak and 
strong interactions. One particularly interest- 
ing development is the generalization of N = 

8 supergravity in four dimensions to simple 
(N = 1) supergravity in eleven  dimension^.^ 
This generalization combines the ideas of 
Kaluza-Klein theories with supersymmetry. 

The formulation and dimensional reduc- 
tion of simple supergravity in eleven 
dimensions requires most of the ideas al- 
ready described. First we find the fields of l l - 
dimensional supergravity that correspond to 
the graviton and gravitino fields in four 
dimensions. Then we describe the compo- 
nents of each of the 1 1-dimensional fields. 
Finally, we use the harmonic expansion on 
the extra seven dimensions to identify the 
zero modes and pyrgons. For a certain 
geometry of the extra dimensions, the 
dimensionally reduced, 1 1 -dimensional 
supergravity without pyrgons is N = 8 super- 
gravity in four dimensions; for other 
geometries we find new theories. We now 
look at each of these steps in more detail. 

In constructing the 1 ldimensional fields, 
we begin by recalling that the helicity sym- 
metry of a massless particle is SO(9) and the 
spin components are classified by the multi- 
plets of SO(9). The multiplets of SO(9) are 
either fermionic or bosonic, which means 
that all the four-dimensional helicities are 
either integers (bosonic) or half-odd integers 
(fermionic) for all the components in a single 
multiplet. The generators independent of the 
SO(2) form an S0(7), which is the Lorentz 
group for the extra seven dimensions. Thus, 
the SO(9) multiplets can be expressed in 
terms of a sum of multiplets of SO(7) X 
S0(2), which makes it possible to reduce 1 1- 
dimensional spin to 4-dimensional spin. 

The fields of 1 1-dimensional, N = 1 super- 
gravity must contain the graviton and gravi- 
tino in four dimensions. We have already 
mentioned in the sidebar that the graviton in 
eleven dimensions has forty-four bosonic 
components. The smallest SO(9) multiplet of 
1 1-dimensional spin that yields a helicity of 
3/2 in four dimensions for the gravitinos has 
128 components, eight components with 
helicity 312, fifty-six with 1/2, fifty-six with 

-112, and eight with -312. Since by super- 
symmetry the number of fermionic states is 
equal to the number ofbosonic states, eighty- 
four bosonic components remain. It turns 
out that there is a single 1 1-dimensional spin 
with eighty-four components, and it is just 
the field needed to complete the N = 1 super- 
symmetry multiplet in eleven dimensions. 

Thus, we have recovered the 256 compo- 
nents of N = 8 supergravity in terms of just 
three fields in eleven dimensions (see Table 
3). The Lagrangian is much simpler in eleven 
dimensions than it is in four dimensions. 
The three fields are related to one another by 
supersymmetry transformations that are 
very similar to the simple supersymmetry 
transformations in four dimensions. Thus, in 
many ways the 1 1-dimensional theory is no 
more complicated than simple supergravity 
in four dimensions. 

The dimensional reduction of the 1 1 -di- 
mensional supergravity, where the extra 
dimensions are a 7-torus, gives one version 
of N =  8 supergravity in four dimensions. In 
this case each of the components is expanded 
in a sevenfold Fourier series, one series for 
each dimension just as in Eq. 1 in the side- 
bar, except that ny is replaced by Sniyi. The 
dimensional reduction consists of keeping 
only those fields that do not depend on any 
yi, that is, just the 4-dimensional fields cor- 
responding to n, = n-} = . . . = ny = 0. Thus, 
there is one zero mode (massless field in four 
dimensions) for each component. The 
pyrgons are the 4-dimensional fields with 
any ni # 0, and these are omitted in the 
dimensional reduction. 

The 11-dimensional theory has a simple 
Lagrangian, whereas the 4-dimensional, N = 

8 Lagrangian takes pages to write down. In 
fact the N = 8 Lagrangian was first derived in 
this way.' It is easy to be impressed by a 
formalism in which everything looks simple. 
This is the first of several reasons to take 
seriously the proposal that the extra 
dimensions might be physical, not just a 
mathematical trick. 

The seven extra dimensions of the 11- 
dimensional theory must be wound up into a 
little ball in order to escape detection. The 
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case described above assumes that the little 
ball is a 7-torus, which is the group manifold 
made of the product of seven phase sym- 
metries. As a Kaluza-Klein theory, the seven 
vector bosons in the graviton (Table 3) gauge 
these seven symmetries. Since the twenty- 
eight vector bosons of N= 8 supergravity can 
be the gauge fields for a local S0(8), it is 
interesting to see if we can redo the dimen- 
sional reduction so that 1 1-dimensional 
supergravity is a Kaluza-Klein theory for 
SO@), the de Wit-Nicolai theory. Indeed, 
this is possible. If the extra dimensions are 
assumed to be the 7-sphere, which is the 
coset space SO(8)/SO(7), the vector bosons 
do gauge ~0(8). '* This is, perhaps, the ul- 
timate Kaluza-Klein theory, although it does 
not contain the standard model. The main 
difference between the 7-torus and coset 
spaces is that for coset spaces there is not 
necessarily a one-to-one correspondence be- 
tween components and zero modes. Some 
components may have several zero modes, 
while others have none (recall Fig. 5). 

There are other manifolds that solve the 
11-dimensional supergravity equations, al- 
though we do not describe them here. The 
internal local symmetries are just those of the 
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extra dimensions, and the fermions and bos- 
ons are unified by supersymmetry. Thus, 1 1- 
dimensional supergravity can be dimen- 
sionally reduced to one of several different 4- 
dimensional supergravity theories, and we 
can search through these theories for one that 
contains the standard model. Unfortunately, 
they all suffer phenomenological shortcom- 
ings. 

Eleven-dimensional supergravity contains 
an additional error. In the solution where the 
seven extra dimensions are wound up in a 
little ball, our 4-dimensional world gets just 
as compacted: the cosmological constant is 
about 120 orders of magnitude larger than is 
observed experimentally. This is the cos- 
mological constant problem at its worst. Its 
solution may be a major breakthrough in the 
search for unification with gravity. Mean- 
while, it would appear that supergravity has 
given us the worst prediction in the history of 
modem physics! 

Superstrings 

In view of its shortcomings, supergravity 
is apparently not the unified theory of all 

elementary particle interactions. In many 
ways it is close to solving the problem, but a 
theory that is correct in all respects has not 
been found. The weak interactions are not 
exactly right nor is the list of spin-Vz fer- 
mions. There seems to be no good reason 
that the cosmological constant should be 
nearly or exactly zero as observed ex- 
perimentally. The issue of the renormal- 
izability of the quantum theory of gravity 
also remains unsolved. Supergravity im- 
proves the quantum structure of the theory 
in that the unwanted infinities are not as bad 
as in Einstein's theory with matter, but 
troubles still appear. Newton's constant is a 
fundamental parameter in the theory, and 4- 
fermion terms similar to those in Fermi's 
weak interaction theory are still present. In N 
= 8 supergravity, which is the best case, the 
perturbation solution to the quantum field 
theory is expected to break down eventually. 

In spite of these difficulties we have 
reasons to be optimistic that supergravity is 
on the right track. It does unify gravity with 
some interactions and is almost a consistent 
quantum field theory. The line of generaliza- 
tion followed so far has led to theories that 
are enormous improvements, in a mathe- 
matical sense, over Einstein's gravity. It 
would seem reasonable to look for gen- 
eralizations beyond supergravity. 

Superstring theories may answer some of 
these questions. Just as the progress of super- 
gravity was based on the systematic addition 
of fields to Einstein's gravity, superstring 
theory can also be viewed in terms of the 
systematic addition of fields to supergravity. 
Although the formulation of superstring the- 
ory looks quite different from the formula- 
tion of supergravity, this may be partially 
due to its historical origin. 

Superstring theories were born from an 
early effort to find a theory of the strong 
interactions. They began as a very efficient 
means of understanding the long list of 
hadronic resonances. In particular, hadrons 
of high spin have been identified experimen- 
tally. It is interesting that sets of hadrons of 
different spins but the same internal quan- 
tum numbers can be grouped together into 
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"Regge trajectories." Figure 6 shows exam- 
ples of Reage trajectories (plots of spin versus 
mass-squared) for the fust few states of the A 
and N resonances; these resonances for 
hadrons of different spins fall along nearly 
straight tines. Such sequences appear to be 
general phenomena, and so, in the '60s and 
early ' 7 0 ~ ~  a great effort was made to in- 
corporate these results directly into a theory. 
The basic idea was to build a set of hadron 
amplitudes with rising Regge trajectories 
that satisfied several important constraints 
of quantum field theory, such as Lorentz 
invariance, crossing symmetry, the correct 
analytic properties, and factorization ofreso- 
n@aice;-pole residues.t2 Although the theory 
was a prescription for calculating the 
amplitudes9 these ~onstraints are true of 
quantum field theory and are necessary for 
the theory to make sense. 

The constraints of field theory proved to 
be too much for this theory of hadrons. 
Something always went m g .  Some the- 
ories predicted particles with imaginary mass 
(tachyons) or particles produced with 
nwtive probability (ghosts), which could 
not be interpreted. Several theodes bad no 
logical difficulties, but they did not look like 
hadron theories. First of all, the consistency 
requirements forced them to be in ten 
dimensions rather than four. Moreover, they 
predicted massless particles with a spin of 2; 
no hadrons of this sort exist. These original 
superstring theories did not succeed in de- 
scribing hadrons in any detail, but the solti- 
tion of Q-CD may still be similar to one of  
them. 

In 1974 Scherk and %hwar@ noted that 
the quantum amplitudes for the scattering of 
the massless spin-2 states in the supershg 
are the same as mviton-gravhon scattering 
in the simplest approximation of Einstein^s 
theory. They then boldly proposed throwing 
out the hadmnic interpretation of the super- 
string and reinterpreting it as a fundamental 
theory of elementary particle interactions. It 
was easily found that superstruigs are closely 
related to supergravity, since the states fall 
into supersymmetry multiplets and itiassiess 
spin4 particles are re~uired. l4 

n 

Fig. 6. Regp im#ectories in hadron physics. The neutron andproton (ff(93S)) lie 
on a linearly rising Regge trajectory with other isospin-Va states: the N(1680) of 

5/& the Nf2220) of spin 9/2, and so on* This fact can be interpreted as meaning 
that the N(1680), for example, looks fifo a nacleun except HIM the marks are b em 
F wave father than a P woven SimiZwly the h0@n-3/2 A resonance at 1232 MeV 
lies on a trajectory with other isospin-3/2 states of spins 7~ JIB, 15/2, and so on. 
The slept of tin hadruaic Regge trajectories is approximately (I Gev/~1)'~. The 
slope o f  the superstring trajectories must be much smaller 

The theoretical development of super- 
strings is not yet complete, and it is not 
possible to determine whether they will fi- 
nally yield the truly unified theory of all 
interactions. They are the subject of intense 
research today. Our plan here is to present a 
qualitative description of superstrings and 
then to discuss the types and particle spectra 
of superstring theories. 

Recent formulations of superstring the- 
ories are generalizations of quantum field 

theory.'' The fields of an ordinary field the- 
ory, such as supergravity, depend on the 
space-time point at which the field is 
evaluated. The fields of superstring theory 
depend on paths in space-time. At each mo- 
ment in time, the string traces out a path in 
space, and as time advances, the string 
propagates through space forming a surface 
called the "world sheet." Strings can be 
closed, like a rubber band, or open, like a 
broken rubber band. Theories of both types 
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are promising, but the graviton is always were numbers that satisfied the rules of or- 
associated with closed strings. dinary arithmetic. Yet another extension of 

Before analyzing the motion of a super- space-time, which is useful in supergravity 
string, we must return to a discussion of and crucial in superstring theory, is the addi- 
space-time. Previously, we described ex- tion to space-time of "supercoordinates" 
tensions of space-time to more than four that do not satisfy the rules of ordinary arith- 
dimensions. In all those cases coordinates metic. Instead, two supercoordinates On and 

ea satisfy anticommutation relations OaQa + 
Opea= 0, and consequently 9(fta (with no sum 
on a) = 0. Spaces with this kind of additional 
coordinate are called superspaces. 

At first encounter superspaces may appear 
to be somewhat silly constructions. Never- 
theless, much of the apparatus of differential 
geometry of manifolds can be extended to 
superspaces, so applications in physics may 
exist. It is possible to define fields that de- 
pend on the coordinates of a superspace. 
Rather naturally, such fields are called super- 
fields. 

Let us apply this idea to supergravity, 
which is a field theory of both fermionic and 
bosonic fields. The supergravity fields can be 
further unified if they are written as a smaller 
number of superfields. Supergravity La- 
grangians can then be written in terms of 
superfields; the earlier formulations are re- 
covered by expanding the superfields in a 
power series in the supercoordinates. The 
anticommutation rule Onea = 0 leads to a 
finite number of ordinary fields in this ex- 
pansion. 

The motion of a superstring is described 
by the motion of each space-time coordinate 
and supercoordinate along the string; thus 
the motion of the string traces out a "world 
sheet" in superspace. The full theory de- 
scribes the motions and interactions of 
superstrings. In particular, Fig. 7 shows the 
basic form of the three closed superstring 
interactions. All other interactions of closed 
strings can be built up out of this one kind of 
interaction. l 5  Needless to say, the existence 
of only one kind of fundamental interaction 
would severely restrict theories with only 
closed strings. 

There is a direct connection between the 
quantum-mechanical states of the string and 
the elementary particle fields of the theory. 
The string, whether it is closed or open, is 
under tension. Whatever its source, this ten- 
sion, rather than Newton's constant, defines 
the basic energy scale of the theory. To first 
approximation each point on the string has a 
force on it depending on this tension and the 
relative displacement between it and 
neighboring points on the string. The prob- 
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lem of unravelling this infinite number of 
harmonic oscillators is one of the most 
famous problems of physics. The amplitudes 
of the Fourier expansion of the string dis- 
placement decouple the infinite set of har- 
monic oscillators into independent Fourier 
modes. These Fourier modes then cor- 
respond to the elementary-particle fields. 
The quantum-mechanical ground state of 
this infinite set of oscillators corresponds to 
the fields of 1 0-dimensional supergravity. 
Ten space-time dimensions are necessary to 
avoid tachyons and ghosts. The excited 
modes of the superstring then correspond to 
the new fields being added to supergravity. 

The harmonic oscillator in three 
dimensions can provide insight into the 
qualitative features of the superstring. The 
maximum value of the spin of a state of the 
harmonic oscillator increases with the level 
of the excitation. Moreover, the energy 
necessary to reach a given level increases as 
the spring constant is increased. The super- 
string is similar. The higher the excitation of 
the string, the higher are the possible spin 
values (now in ten dimensions). The larger 

the string tension, the more massive are the 
states of an excited level. 

The consistency requirements restrict 
superstring theories to two types. Type I 
theories have 10-dimensional N = 1 super- 
symmetry and include both closed and open 
strings and five kinds of string interactions. 
Nothing more will be said here about Type I 
theories, although they are extremely inter- 
esting (see Refs. 14 and 15). 

Type I1 theories have N = 2 supersym- 
metry in ten dimensions and accommodate 
closed strings only. There are two N = 2 
supersymmetry multiplets in ten dimen- 
sions, and each corresponds to a Type I1 
superstring theory. We will now describe 
these two superstring theories. 

The Type IIA ground-state spectrum is the 
one that can be derived by dimensional re- 
duction of simple supergravity in eleven 
dimensions to N = 2 supergravity in ten 
dimensions. Thus, if we continue to reduce 
from ten to four dimensions with the 
hypothesis that the extra six dimensions 
form a 6-torus, we will obtain N = 8 super- 
gravity in four dimensions. The superstring 

theory adds both pyrgons and Regge recur- 
rences to the 256 N = 8 supergravity fields, 
but it has been possible (and often simpler) 
to investigate several aspects of supergravity 
directly from the superstring theory. 

The classification of the excited 1 O-dimen- 
sional string states (or elementary fields of 
the theory) is complicated by the description 
of spin in ten dimensions. However, the 
analysis does not differ conceptually from 
the analysis of spin for 11-dimensional 
supergravity. The massless states, which 
form the ground state of the superstring, are 
classified by multiplets of SO@), and the 
excitations of the string are massive fields in 
ten dimensions that belong to multiplets of 
SO(9). The ground-state fields of the Type 
IIA superstring are found in Table 4. 

The Type IIB ground-state fields cannot 
be derived from 1 1 dimensional super- 
gravity. Instead the theory has a useful phase 
symmetry in ten dimensions. The fields 
listed as occurring twice in Table 4 carry 
nonzero values of the quantum number as- 
sociated with U(1). So far, the main applica- 
tion of the U(l) symmetry has been the 
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Fig. 8. The ground state and first Regge recurrence of fermionic states in the 10- 
dimensional Type IIB superstring theory. There are a total of 256fermionic and 
bosonic states in the ground state. (The 56s contains the gravitino.) The first 
excited states contain 65,536 component fields. Haifof these are fermions. (Each 
representation of the fermions shown above appears twice.) 

derivation of the equations of motion for the 
ground-state fie1ds.l7 It will certainly have a 
crucial role in the future understanding of 
Type IIB superstrings. 

The quantum-mechanical excitations of 
the superstring correspond to the Regge re- 
currences, which are massive in ten 
dimensions; they belong to multiplets of 
SO(9). Thus, it is possible to fill in a diagram 
similar to Fig. 6, although the huge number 
of states makes the results look complicated. 
We give a few results to illustrate the 
method. 

The sets of Regge recurrences in Type 1 1 .  
and IIB are identical. In Figure 8 we show the 
first recurrence of the ferrnion trajectories. 
(Note that only one-half of the 32,768 fer- 

mionic states of this mode are shown. The 
boson states are even messier.) The first ex- 
cited level has a total of 65,536 states, and the 
next two excited levels have 5,308,416 and 
235,929,600 states, respectively, counting 
both fermions and bosons. (Particle 
physicists seem to show little embarrassment 
these days over adding a few fields to a 
theory!) 

The component fields in ten dimensions 
can now be expanded into 4-dimensional 
fields as was done in supergravity. Besides 
the zero modes and pyrgons associated with 
the ground states, there will be infinite lad- 
ders of pyrgon fields associated with each of 
the fields of the excited levels of the super- 
string. 
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